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DETECTION PERFORMANCE OF SIGNALS IN DEPENDENT NOISE
FROM A GAUSSIAN MIXTURE UNCERTAINTY CLASS

I. INTRODUCTION

The discrete-time detection of signals in non-Gaussian, dependent (correlated) noise is a difficult
problem of fundamental interest. Aside from the non-Gaussian aspect, the problem is complicated by the
correlation in the noise data. To attack the detection problem requires specification of a multivariate non-
Gaussian distribution that accounts for both the correlation function and the non-Gaussian marginal
distributions. It is desirable to find a multivariate distribution of sufficient generality to model the desired
noise characteristics (i.e. correlation and non-Gaussian marginals), yet of sufficient tractability to yield
a solution to the detection problem. A general class of distributions that allows one to accomplish this
is the Gaussian mixture distributions (GMD).

The GMD has found utility in modeling radar clutter {1-6,18]. A Rayleigh mixture distribution
(RMD), which is closely associated with the GMD, is often used to model the amplitude characteristics
of radar clutter [1-6]. Such common amplitude clutter models as Weibull, K, and contaminated Rayleigh
can be represented as RMD’s [1,6]. These models were formulated to account for the target-like spikes
that were observed in experimental clutter data [2,3,7-12]. For multivariate clutter modeling, the RMD
has a natural extension to modeling clutter as a multivariatt GMD where often the only knowledge one
has of the inputs is the univariate amplitude distribution and the correlation matrix [1,6,18].

Hence much of the information necessary to define a detection scheme for a desired signal
embedded in correlated clutter modeled as a GMD is known. For our purposes, this detection structure
takes the form of the Generalized Likelihood Ratio Test (GLRT) [13] whereby the unknown complex
amplitude of the desired signal is estimated.

Quite often the univariate mixing distribution of the RMD (or GMD) is unknown but can be
lower and upper bounded (e.g., using histograms constructed from measured input data). Hence, if one
designs a detector for a given GMD which is within this class of bounded distributions, the detection
performance will vary from the expected nominal performance when the inputs are not this same GMD
but still a member of this class.

A minimax detector approach (see. e.g., [14,15]) for finding a good detector for a given input

uncertainty class is as follows. Find a distribution, f’op, that is a member of the given input uncertainty
class on which we base our detection scheme (this is sometimes called the detection operating point)
which has the following saddle point property; R(Pop,Pop) < R(f’ap,lsop) < R(Pl.,Pop). For these
inequalities R(:,") is some measure of the detector’s performance where the first argument indicates the
input distribution and the second argument indicates the detector operating point distribution. The larger
R is the better we judge the detector’s performance. P, and P, are any distributions from the input
uncertainty class.

We do not use the minimax detector approach in that we choose any distribution from within the
uncertainty class as a detector operating point. Thereafter we quantify the performance of the detector
when the input distribution is any from the uncertainty class. The performance will degrade when the
input distribution is not matched with the detector’s operating point distribution. Specifically, in this
paper, we derive the GLRT and performance measures (probabilities of detection and false alarm)
associated with a given GMD (the designed operating point) for inputs from a given GMD uncertainty
class of bounded distributions. In addition, nontrivial upper and lower bounds of performance are derived
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which are functions of the bounding functions of the uncertainty class, the detection threshold, and for
the detection probability, the desired signal strength.

II. PRELIMINARIES
A. Gaussian Mixture Detectors

Consider the following binary hypotheses

z=x
(1

Z=as, +X

where z, x, and s, are N-length vectors belonging to the N-dimensional complex space, CV, and
z = {z; n =1,2,...,N} is a sequence of observations or samples. The H, hypothesis corresponds to
the case when no desired signal is present. The H, hypothesis corresponds to the case where the desired
signal vector, as,, is corrupted by an additive zero-mean noise vector, X. Here a is the unknown complex
amplitude of a known signal vector, s,, and s, is normalized so that s, s, = 1 where H denotes the
conjugate transpose operation.

If the noise is modelled as a GMD then z has the following N-variate probability density function
(pdf) under H,, (i = 0,1):

1 1 q )
- (2) = — ex - 2| dP
/ 7 det & J“v ™ P [ T !
where
H -1 ;i -
.- H o 7 ,i =0, 3)
' (z - as)! ¢ (z - as) L= 1,

normalized covariance matrix of x (assumed nonsingular),
variance of any element of x,

Gaussian mixing distribution,

= support of 7, @2, € [0, o),

SECIR
oo

-

and der denotes the matrix determinant. The normalized covariance matrix is defined as follows. Set

X = (x;, X, . . . , xy)" where T denote the transpose operation. Then
¢ - E{xx"}
E{7}

where E denotes the expected value. For the case where the N inputs are equi-spaced time samples from
a wide-sense stationary process, ¢ is a normalized correlation matrix with the Hermitian-Toeplitz form
where each diagonal element is equal to one.



If the complex amplitude, a, were known then the Neyman-Pearson likelihood ratio (LR) statistic
is given by

A= @ 4)
@
Define the function Fj as
- L _B 5
F(B) jn' 5 o [ _T.]dp,. )
Then it is seen that the LR detector is given by
- H -1 (7 -
X o Ff(z - as)' @' (z - asy) ' ©)

F(z" &' z)

For many detection problems, the complex signal amplitude of the desired signal vector is
unknown to the detector. In general if one has unknown parameters in the LR detector, a scheme known
as the Generalized Likelihood Ratio Test (GLRT) is commonly used whereby the unknown parameters
are found using their maximum likelihood (ML) estimates under each hypothesis {13]. These estimates
are then inserted into the respective pdf’s (under H, and H,) and the LR is formed. We now derive the
GLRT for detection of a signal with unknown complex amplitude in additive Gaussian mixture noise.

The GLRT for our problem is given by

\ F @z - asp)t &' (z - dsy))

(7
Fz" &' z)

where

d = arg max F((z - as)" &' (z - asy)). ®)

The maximum of F,, with respect to a can be found by setting dFy/da = 0 and solving for a. Now

Fy _ag ©
da da dp
where
B =@z - as)' &' (z - asy). (10)

Using (5), we can show



LA -8 11
2 janNolexp[ _T.] dp,. (11)

From (11) it is seen that dF,/dB < 0. Thus all solutions for a in Eq. (9) must satisfy d@/da = 0. It
is straightforward to show that this equation has only one solution which is given by

a-= . (12)

Note that (12) is the ML estimate of the complex signal amplitude when the contaminating noise is purely
Gaussian. Inserting (12) into (7) results in the GLRT for Gaussian mixtures:

\ - Fa'" o'z (1 - |p|»)

13
F (2" &' 2) =

where || denotes magnitude,

H -
sy ' z|?
opp - 10 & 2 (14)
@ d'z) (s ' sy

and 0 <|p|<1.
B. Problem Statement

Let P be the set of all univariate distribution functions that have support @ [0, o], are right-

continuous at 7 = 0, and equal zeroat 7 = 0. Let G and G be non-negative, right-continuous, bounded
monotonically increasing functions (not necessarily distribution functions) on {0, oo] which are zero at 7
= (. Define the uncertainty class P, as

P -{P|G<P <GP cP. (15)

Often one implements a detection scheme based on a representative element of P,, say P,"; i.e.

the GLRT given in the previous subsection is implemented with P, = P, PM will be called the
detector operating point. If the actual multivariate inputs had an underlying distribution P, € P,, we
are interested in formulating the detection and false alarm probability performance which we denote by
Py(P,", P® T)and PPV, P?, T), respectively. In addition, we would like to find nontrivial upper
and lower bounds on these performance measures such that

L(G.G.T) < PP",P® 1) < U(G,G,D (16)

and



L{G,G,T) < PAPY,PP.T) < ULG, G.T) an

where the upper and lower bounds are functions of just G, G, and the detection threshold, T. The
detection measures, Pp, L,, and U, are also a function of the signal-to-noise ratio. In the following
sections, expressions for Py, Pr, L,, Up, L, and Uy are derived.

IIL. P, AND P, DERIVATION
A. Equivalent GLRT

In this subsection we present a simplified equivalent GLRT which will allow us in the next section
to find explicit results for the GMD detector’s performance. To this end, it is known [16] that if ¢ is
non-singular, then we can matrix transform the input vector, z, by a non-singular N X N matrix A, which
has the properties that the input noise vector is whitened, each input element has noise power normalized
to one, and

As, = (o @7 5)'% 0,0,...,0)" = §, (18)

We note that all of the desired signal has been placed into the first element by the matrix transform.
Thus if u = Az where u = (,, U, . . . , 4)", then under H,

E {uu'} = [ (19)

N

where I, is the N X N identity matrix. Transforming the input by a non-singular matrix transform, 4,
does not change the performance measures of the GLRT that were discussed in the preceding section.

If we use the vector, u, as our starting point in determining the GLRT, it can be shown that the
N-variate pdf of u under the two hypothesis is given by (2) and (3) by setting & = I,. Furthermore, the
GLRT is given by (13) and (14) with ¢ = I, as

H _1A12
F, (u' u)
where F), is defined by (5) and
|~|2 _ |§(;{ u]2 _ |u1|2
or s @1

' u) G §) B XN: » |2.

n=1

Substituting (21) into (20) results in



rN
- FN E Iunlz
)\ - n=2 { . (22)
[
FN E] lun|2

Define the N-variate function, A, such that A = A(u). A functional block diagram of the
equivalent GLRT is shown in Fig. 1. In this figure, T is the detector threshold.

B. Derivation

In this section, we derive closed-form solutions for the probabilities of detection, P, (P,, P,®,
T), and false alarm, P (P, P,%, T), associated with the GLRT discussed in the previous section. After
the A matrix transformation, the desired signal is contained only in the first element of u under H,, and
is equal to a(s," &' s5)'?. We set a = a, €® where ¢ is the phase and a, the magnitude of a. Note that
at this point in processing, the first element of u is the matched filter output and that the signal-to-noise
(S/N) associated with the matched filter denoted by (S/N),, can be expressed as

(S/N),, = a5 s5 &5, (23)

Set a, = ao(sé{ ¢! s)'2. We now analyze the statistically equivalent GLRT presented in the previous
subsection. Set

w = |u|? (24)
N
v=Y ul (25)
n=2
We note that the random variables (r.v.’s) |u,|%, |u,|?, ..., |u,|* when conditioned on 7 are statistically

independent. Thus w and v when conditioned on 7 are statistically independent. It is straightforward
to show that v when conditioned on 7 under H, or H, has a 2(N - 1) Chi-square pdf [17] with ¢*> = .5
and is given by

= 1 N-2 -vit 26
pvh(vl T) m \4 e ( )

where p |, (+|7) denotes that the pdf is conditioned on 7.

Under H, and conditioned on 7, u, is a complex circular Gaussian r.v. with variance equal to 7
and under H,, |u,| has a non-central Rayleigh distribution. In fact, it is straightforward to show



e-w/r

S =

, w = 0, under H

w|T) = @7)
Pu¥17) | 2aw
e @ 0 , w = 0, under H,
T

=

where I, is the modified 0’th order Bessel function of the first kind.

The decision rule in terms of w and v is

H

(1) !
LA (28)

Fm(w + V) <
N HO

where the superscript on the Fy indicates that Fy, is evaluated using (5) with P, = P,. It was shown in
the previous section that Fy, is strictly monotonically decreasing. As a result, since 7 = 1, and because
F, is a one-to-one function, an equivalent decision rule for (28) is

H, M
> a | Fv )
w2 EP

H

0

-v =TWwT) (29)

where F,! is the inverse function of F,. Define P(D|v,7) to be the probability of detection when
conditioned on v and 7. Thus

- 1 -ow+adn 24, \/VT’
P(D|v,t) = - oI d
(D]v,c) fro(v,n : ¢ 0( T v
(30)
2T, (v, T
=Q[60\P,.|———°( )]
T T
where Q(-, -) is Marcum’s Q function [13]. Finally,

P, (P, PP, 1) = j ) J 0°° P(D|v,7) p, (v|7) dvdP”. (31

The false alarm probability can be found by setting @, = 0 in (30). It will be found that
FOUFEPONTY - v (32)

1 2 *® @
Py (P’()’ P’()’T) - IQ, Io pvlr(vlT) eXp - [ ] dVdP1)-

T



IV. PERFORMANCE BOUNDS
A. Useful Lemmas

In this section, we prove three lemmas that will be used to derive upper and lower bounds of
performance for P,(P.", P®,T) and P(P.", P®.T).

Lemma I: Let f(1) be a differentiable function on [0, ] with f0) < oo and fiec) = 0. Define

G it -f() =0
G -1 & AU (33)
G(7) otherwise
G(1) if -f'(n =20
G( =] _ (34)
G(1) otherwise.

where ' denotes differentiation with respect to 7. If P, € P,, then
j " fin) dG, < J fir) P, < j " R dG,, . 35)
0 0, 0
Proof: Integrating by parts, we can show
_ o - ™ , 36
[ , fin) aP, j . fo ap, [ S f@P@ dr. (36)
Using (33) and (34) and the fact that G < P, < G , it follows that

[ DG dr < - [T @) P dr < - [ 70 Gy dr @37

Integrating each of the above three integrals by parts results in (35). O

Lemma 2: Define

Fg) = [ al‘~ e dG + [~ aLN e5 dG (38)
FB) = | . % e dG [ % P 4G (39)

Then



F(B) < F\B) < F@). (40)

Proof: Integrating by parts, we can show

o0 -Bla
F® - | [- d% [E(TN]] P(7) dr . @41)
Set
- G if ~ (e /o) 2 0 (' denotesd/da) (42)
a =
G otherwise
and
Vi) G if - (e = 0 (43)
a) = | _
a G otherwise.

It is straightforward to show that —(e #*/a)’ = 0 iff « = B/N. Also from (42) and (43), it follows
that

= d [eP™ ol d [e® o[ d[e?)]5
jo [-%[ — ” V(o) do < jo [-% [7” P(7)dr < jo [—a[ — H V(o) da
(44)

Integrating each of the above integrals by parts and using the definitions given by (38) and (39), Eq. (40)
results. O

Using the definitions of F,, 1_7 and F given by (5), (38), and (39), respectively, it can be shown
that F,, 177, and F are strictly monotonically decreasing functions of 8 on [0,]. Let Q,, Oz, and Q.

be the ranges of F),, 177, and F respectively. Each of these ranges includes O as one end point (8 = o).

The other end point of the ranges may or may not be infinite. Now Fy', F', and F™' are strictly
monotonically decreasing functions. We define on [0, 0] the following functions:

- F'oy if \eQ:
gy - (T 4 (43)
0 otherwise



F'(\) if A€ Qf (46)

E(;I()\) |0 otherwise
and
Fay - Fi'y if Neq @)
0 otherwise.
Lemma 3: ForT = 1
F! (FMIT) < Fy' (F,MIT) < F,' (FW)IT). (48)

Proof: For T = 1, Fy (W)/T is always in the range of Fy. From Lemma 2, F < F, < F. Using this

and the fact that F, F , and F, are strictly monotonically decreasing, it can be shown that
— -1 !
F, '< Fyo £ F,

Thus

FrF)IT) = E' (FW)IT) = F (FO)/ID (49)

and
Fuo (F\WIT) < F' (FWIT) < F,' (FOW/IT). (50)

The last inequality in (49) follows because fo" is monotonically decreasing and F,(v)/T < I_7(v)/T. A

similar argument establishes the last inequality of (50). Since, for T = 1, F,}}, (FWITy = F,Q'(FN(V)/T),
and the lemma follows.D

B. Derivation

In this subsection, we derive nontrivial lower and upper bounds of performance for Pp(P,", P,
T) and P(P,", P2, T).

Theorem 1.

LG, G.T) < PP".PP.T) < U,G, G,T) 51
where

10



fl

Ly(G, GT) = [~ H,(r.]) dG,,

UG, G = [ " HyrT) G,

HynD) = 7 T [ EOIT) - v, 7 p, (v]7) dv

Hy(1,T) = [ A s EWT) - v, 71 p,,(v]7) dv

< G(n i - GHD/GT >0
G(1) =] _
| G(7) otherwise
G(1) if - 0H /ot = O
Gyp(7) =7
| 6() otherwise

and

w ] —w+521 - - 2 2
It 2 f, ; € ( 2 Io(zao‘/W [O)dw = Q (ao &, 4| -;t}

Proof: From the results of Section III, it can be demonstrated that
PP, PND) = [ H'(r ) aPy”
. (17

where

oo

® 1 —(w + 601 T -~
HY@T) = (7 [~ e S L agfwin) p,v]7) dway,

A

P, is given by (26), and T(v,T) is given by (29). Furthermore,

H(7,T) = J 0°° Iy [ESELMITD) = v, 71 p, (v]7) dv.

(52)

(33)

(54)

(55)

(56)

(57

(58)

(59

(60)

(61)



Using Lemma 3, since J, is monotonically decreasing with respect to its first argument, we can
show

JFEWIT) - v, 1) < 1, IFAELIT) - v, 7] ©2)
< JD(E(;‘ (FWIT) - v, 1].

Since p, (v|7) = 0, it follows that
H (1,1) < HY(,T) < Hy1,T) (63)

and

[, @D aP? < [ HPGT) PP < [ " HnT) ap?. (64)
0 b 0, 0

It is straightforward to show that L{D and i_ID < o for 7€[O0, m],ﬂD(OO,Y) = 1_10(00,7) = 0, and ﬁD

and H p are differentiable on [0, c]. Thus invoking the appropriate inequalities of Lemma 1:

J , H/.D dG,, < j ., H@.D P (65)
and

[, Hy(1,T) dP? < | H(1,T) dG,, (66)

where G, and G, are defined by (56) and (57), respectively. The results of (64)-(66) prove the
theorem.O

In similar fashion we can prove

Theorem 2:

LAG, G,) < PAP{", P?,T) < ULG, G.T) 67)

where
LAG, G,T) = [ 0°° H (r.1) dG,, (68)
ULG, G,T) = j o‘” HJ7,T) dG,, (69)

12



1
D = [ exp - K€D (E(j)m_v] P (v|7) dv (70)
_ . FOFW)/T)-v
H/1,T) = JO exp - ___0.__._] p,, (V|7 av (n
and
G1 i “0H [01 = 0 -
G =1_ 2
| G(7) otherwise
G if ~dH 37 = 0
G,(1) - 1 d (73)
\Q(T) otherwise.

C. Performance Spread

For a given detector operating point and threshold, it is desirable to quantify the performance
measure spread over the input uncertainty class. Thus we define

SAPY.T) = max | PyPY, PP - PP, PP (74)
PO, PP € P,
and
SPO.T) = max |PLPY, PP.D) - PAPY, PPD). (75)
PO, PP € 7,

We desire to upper bound the maximum performance measure spread. To this end, define

ST = max S,(P".1) (76)
P € P,

SAD = max S(PO.D. (77)
P € P,

Using Theorems 1 and 2 it is trivial to show that

S,D < UJG, G.T) - L(G, G,T) (78)

13



S{T) < ULG, G T - LG, G,D). (79

The following theorem provides a looser set of upper bounds on S p and S s

Theorem 3: Let G and G admit density functions g and g, almost everywhere with respect to measure,

7 (a.e. [7]) respectively where g = dGldr, g = dGldr. Then

ST < jo‘" Hyn.D |g - gldr (80)

SAT) < [, H(n,T) |g - gldr. ®1)

Proof: The proofs of (80) and (81) are similar so that we only present the proof of (80). From (51)-(53),
it follows that

SPO.T) < [ . HY (D dG,, - G,). (82)

If G and G admit densities, then G, and G, defined by (56) and (57) admit densities a.e. [7]. Set
8p = dG,/dr, g, = dG,/d7. In addition, |g,, - g, = |g - g|. Using (82)

SPD = [T HPD) @y - 8 d

< Jom Hy(1,T) |8, - 8] 47 = .[ow H(1,T) |3 - g| dr. (83)

Since the expression on the right above is independent of P, (80) follows.O

The bounds given above might be utilized as follows. First, find the threshold 7, such that a given

desired probability of false alarm is equal to U.(G, G, T). Hence we can guarantee the false alarm
performance over the uncertamty class for any detector operating point that is chosen from the uncertainty

class. Next, find U, (G, G, T) and L (G, G T) and ascertain 1) is L, sufficient to guarantee a given
level of detection performance and 2) what is the potential spread (Use (78) or (80)) of detection
performance?

V. SUMMARY

Detection performance in terms of probabilities of detection and false alarm (P, and P,) was
derived for a desired signal embedded in correlated multivariate noise from a Gaussian mixture
uncertainty class. This uncertainty class is defined using upper and lower bounding functions on the
univariate Gaussian mixing distribution function. For a given detector operating point, expressions for
Pp and P, were derived. In addition, nontrivial lower and upper bounds of performance were derived

14



which are functions of the bounding functions of the uncertainty class, the detection threshold, and the

matched filter signal-to-noise power ratio, (S/N)

(only for Pp).

opt
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